検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Promising neutron irradiation applications at the high temperature engineering test reactor

Ho, H. Q.; 本多 友貴*; 濱本 真平; 石井 俊晃; 高田 昌二; 藤本 望*; 石塚 悦男

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021902_1 - 021902_6, 2020/04

High temperature engineering test reactor (HTTR), a prismatic type of the HTGR, has been constructed to establish and upgrade the basic technologies for the HTGRs. Many irradiation regions are reserved in the HTTR to be served as a potential tool for an irradiation test reactor in order to promote innovative basic researches such as materials, fusion reactor technology, and radiation chemistry and so on. This study shows the overview of some possible irradiation applications at the HTTRs including neutron transmutation doping silicon (NTD-Si) and iodine-125 ($$^{125}$$I) productions. The HTTR has possibility to produce about 40 tons of doped Si-particles per year for fabrication of spherical silicon solar cell. Besides, the HTTR could also produce about 1.8$$times$$10$$^{5}$$ GBq/year of $$^{125}$$I isotope, comparing to 3.0$$times$$10$$^{3}$$ GBq of total $$^{125}$$I supplied in Japan in 2016.

論文

Feasibility study of new applications at the high-temperature gas-cooled reactor

Ho, H. Q.; 本多 友貴*; 濱本 真平; 石井 俊晃; 高田 昌二; 藤本 望*; 石塚 悦男

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 6 Pages, 2018/10

Besides the electricity generation and hydrogen production, HTGRs have many advantages for thermal neutron irradiation applications such as stable operation in longterm, large space available for irradiation target, and high thermal neutron economy. This study summarized the feasibility of new irradiation applications at the HTGRs including neutron transmutation doping silicon and I-125 productions. The HTTR located in Japan was used as a reference HTGR in this study. Calculation results show that HTTR could irradiate about 40 tons of doped Si particles per year for fabrication of spherical silicon solar cell. Besides, the HTTR could also produce about 1.8x105 GBq in a year of I-125, comparing to 3.0x103 GBq of total I-125 supplied in Japan in 2016.

2 件中 1件目~2件目を表示
  • 1